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4. Infection rates and parasite diversity exhibited considerable variation across re-

gions in the Americas. In opposition to the latitudinal gradient hypothesis, both
the diversity and prevalence of Leucocytozoon parasites decreased towards the
equator. Host relatedness and traits known to promote vector exposure neither
predicted infection probability nor parasite diversity. Instead, the probability of a
bird being infected with Leucocytozoon increased with increasing vegetation cover
(NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages de-
creased with increasing NDVI. Infection rates and parasite diversity also tended to

be higher in cooler regions and higher latitudes.

. Whereas temperature partially constrains Leucocytozoon diversity and infection

rates, landscape features, such as vegetation cover and water body availability,
play a significant role in modulating the probability of a bird being infected. This
suggests that, for Leucocytozoon, the barriers to host shifting and parasite host
range expansion are jointly determined by environmental filtering and landscape,
but not by host phylogeny. Our results show that integrating host traits, host an-
cestry, bioclimatic data and microhabitat characteristics that are important for
vector reproduction are imperative to understand and predict infection preva-
lence and diversity of vector-transmitted parasites. Unlike other vector-transmit-
ted diseases, our results show that Leucocytozoon diversity and prevalence will
likely decrease with warming temperatures.

KEYWORDS

1 | INTRODUCTION

Understanding the geographic distribution, host range expansion and
infection prevalence of pathogens under climate change and across
heterogeneous landscapes has become a central goal in disease ecol-
ogy (Parratt, Numminen, & Laine, 2016; Stephens et al., 2016). Yet, for
the infectious agents causing a multitude of human and zoonotic dis-
eases, the climatic, ecological and historical determinants of diversity,
geographical distribution and host usage are not resolved (Stephens
et al., 2016). This lack of basic knowledge presents a clear impediment
to understanding when and where a pathogen will emerge, thus limit-
ing our ability to predict and prevent future disease outbreaks.
Climate change impacts parasite infection rates because spatio-
temporal variation in host community structure, caused by shifts in
temperature and precipitation, alters host-parasite contact rates
(Canard et al., 2014). Host traits that limit infection can also fluctuate
in response to environmental conditions (Joseph, Stutz, & Johnson,
2016). Warming temperatures, for instance, can alter the phenol-
ogy of avian hosts by changing the onset of their breeding period
(Walther et al., 2002). Therefore, environmental changes can have
important consequences on host-pathogen interactions and may in-
crease the spread of infectious diseases, especially for those patho-

gens and parasites transmitted by hematophagous dipteran insects

community assembly, latitudinal diversity gradient, macroecology, NDVI, parasite distribution,

parasite diversity, phylogenetic diversity

as they are dependent on water and temperature for reproduction
and host-seeking activity.

Geographical variation in infection prevalence for many vector-
borne parasites is influenced not only by climate heterogeneity but
also by local landscape factors (Haque et al., 2010; Woolhouse et
al., 1997). Vectors' breeding sites are heterogeneously distributed
across the landscape; thus, accurate characterization of aquatic hab-
itat availability (potential breeding sites) across host communities is
useful for predicting the spatial distribution of vector-transmitted
parasites. Water bodies and microhabitat (e.g. vegetation cover) avail-
ability induce local geographic reproduction of vectors, both of which
may trigger changes in pathogen transmission dynamics (Lafferty,
2009; Santiago-Alarcon, Palinauskas, & Schaefer, 2012). Detecting
landscape correlates using high-resolution satellite remote-sensing
services is becoming an increasingly important step towards under-
standing variation in parasite infection probabilities (Pullan et al.,
2011; Soares Magalhaes, Clements, Patil, Gething, & Brooker, 2011).

Though free-living organisms exhibit macroecological patterns
such as the marked increase in species richness from high to low lat-
itudes, known as the latitudinal diversity gradient (hereafter ‘LDG’,
Hillebrand, 2004; Pianka, 1966; Rohde, 1992), a recent meta-analy-
sis showed that this phenomenon does not hold true for parasitic or-

ganisms (Kamiya, O'Dwyer, Nakagawa, & Poulin, 2014). In free-living
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organisms, the LDG may be caused by multiple factors including cli-
mate stability in tropical zones, lower rates of diversification in tem-
perate zones, ecological interactions, variation in size of continental
landmasses and increased productivity near the equator (Mittelbach
etal.,, 2007; Pianka, 1966; Rohde, 1992). Studies of spatial patterns of
parasite diversity are less common and have found conflicting results
(Bordes, Morand, Krasnov, & Poulin, 2010). When there is support
for the LDG among parasite taxa, variation in host species richness is
usually recognized as the explanatory factor for the pattern (Poulin,
2007, 2014). The absence of a latitudinal gradient for endoparasitic
helminths of mammals and birds (Poulin, 1995) might be explained
by the relative stability of their environment, since host internal
body temperature is relatively constant (Rohde & Heap, 1998). In
contrast, parasites such as those in the order Haemosporida that are
vectored by blood-feeding insects are exposed to and dependent on
external environmental conditions (temperature and precipitation)
that change with latitude. However, the only two studies to test LDG
for haemosporidian parasites in bird communities did not find a sig-
nificant relationship between parasite diversity in temperate Chile
(Merino et al., 2008) or across a global scale (Clark, 2018).
Haemosporidians (Phylum Apicomplexa, Order Haemosporida)
are protozoan parasites that infect vertebrate blood cells and are
transmitted by hematophagous dipteran vectors (Santiago-Alarcon
et al., 2012; Valkitnas, 2005). Birds host the highest species di-
versity of haemosporidian parasites, which are traditionally placed
within three genera: Haemoproteus (containing two distinct sub-
genera Haemoproteus and Parahaemoproteus), Leucocytozoon and
Plasmodium (Valkitnas, 2005). Plasmodium is widely distributed in
vertebrate hosts with either nucleated (birds and reptiles) or anu-
cleated (mammals) red blood cells. In contrast, Haemoproteus and
Leucocytozoon exclusively infect birds (Valkitnas, 2005).
Historically, the genus Leucocytozoon has been vastly under-
sampled, with limited information on prevalence, distribution, di-
versity, taxonomy and its relationships with avian and vector hosts
(Fecchio et al., 2018; Galen, Nunes, Sweet, & Perkins, 2018; Lotta
et al,, 2016; Lutz et al., 2015; Valkitinas, 2005). It has been re-
cently suggested that high temperature is an environmental filter
for Leucocytozoon that might constrain parasite prevalences and
distributions in lowland South America (Fecchio et al., 2018). This
hypothesis was based on the scarcity of Leucocytozoon infections
reported in Brazilian lowlands (Fecchio et al., 2018), whereas higher
prevalence has been reported in the tropical Andes, especially
above 2,000 m (Galen & Witt, 2014; Harrigan et al., 2014; Lotta et
al., 2016), where the annual average temperature is lower compared
to lowland tropical sites. Fecchio et al. (2018) linked the scarcity of
Leucocytozoon infections with warmer temperatures in the tropi-
cal lowlands rather than a lack of transmission opportunity, as the
vectors for this genus (black flies in the family Simuliidae) are abun-
dant and diverse in lowland regions. Nevertheless, some studies
have found strong support for the relationship between prevalence
of Leucocytozoon and altitude (Barrow et al., 2019; Galen & Witt,
2014; Gonzalez et al., 2014; Harrigan et al., 2014; Lotta et al., 2016)

or latitude (Merino et al., 2008). However, the combined effect of
latitude and altitude that ultimately reflects a gradient of tempera-
ture, precipitation and host diversity have never been tested for
Leucocytozoon infections across the New World (but see Barrow et
al., 2019 for a local analysis across the Tropical Andes of Peru).
Here, we used data on the prevalence and distribution of
Leucocytozoon parasites to explore macroecological patterns in
diversity and infection rates across Neotropical and Nearctic bird
communities. Using phylogenetic Bayesian hierarchical models, we
asked whether patterns of parasite diversity and probability of infec-
tion across the New World are driven by site-level (climate, latitude,
altitude and landscape) or host species-level predictors (host phylo-
genetic relationships, diet, height of foraging and sex). We predicted
that Leucocytozoon infection probability would be higher in regions
with lower temperature (Fecchio et al., 2018; Valkitnas, 2005). If
parasite host shifting decreases continuously with increasing phy-
logenetic distance between its original host and potential new hosts
(Clark & Clegg, 2017; Poulin, Krasnov, & Mouillot, 2011), we would
expect similar infection rates among closely related host species.
We also expect higher parasite infection probabilities at sites closer
to water bodies and increased vegetation cover, as these landscape
factors might be correlated with higher vector abundance (Oakgrove
et al., 2014). Collectively, our analyses identify the predictors and
contributions of climate, geography, landscape and host ancestry to
regional community assembly and infection rates of Leucocytozoon,

one of the most prevalent parasites of birds in the New World.

2 | MATERIALS AND METHODS

2.1 | Sample collection

We collected 6,293 blood and tissue samples from 909 avian species
across the New World. Our sampling included 69 bird communities
surveyed across 12 bioregions in South America (Argentina, Brazil,
Chile, Peru), Central America (Honduras, Nicaragua) and North
America (Mexico and the United States of America) (Figure 1). The
majority of samples were collected during the summer from the pe-
riod of 2010 to 2017. Netted birds were bled by brachial venipunc-
ture, and blood was collected in heparinized capillary tubes. After
blood collection, birds were either ringed and released or killed and
prepared as museum specimens. Birds not likely to be captured with
mist nets were collected with firearms in Brazil, Honduras and Peru.
Liver samples were taken during specimen preparation and stored
in liquid nitrogen or RNAlater until DNA extraction. Blood samples
were stored in 95% ethanol or on FTA cards. All tissue samples and
birds were collected in accordance with appropriate permits in each
of the eight countries listed above.

2.2 | Molecular detection of parasites

DNA was extracted from bird tissues using the Qiagen DNeasy 96
Blood and Tissue kit (Qiagen), following the Qiagen tissue protocol
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for both blood and tissue stored in 95% ethanol. For most sam-
ples, the protocols of Bell, Weckstein, Fecchio, and Tkach (2015)
were followed to both initially screen samples for haemosporid-
ian DNA with real-time PCR and then to amplify a 477-bp region
of the Leucocytozoon cytochrome b gene (cyt-b) from positive
samples using nested PCR. Samples from Alaska and Minnesota
were screened and amplified following the protocols of Hellgren,
Waldenstrém, and Bensch (2004), which amplifies the same 477-
bp region of cyt-b. All PCR amplifications included both negative
and positive controls. All PCR products were run on 1.25% agarose
gels, stained with ethidium bromide, visualized under UV light and
photographed. Positive PCR products were purified using ExoSAP-
IT (Affymetrix) and sequenced using BigDye terminator v3.1 cycle
sequencing kit (Applied Biosystems) on ABI 1300 and 3100 DNA
sequencers (Applied Biosystems).

Sequence identities were verified with a local BLAST against
the MaLAvi database (Bensch, Hellgren, & Pérez-Tris, 2009) using
BioEpiT v7.2.0 (Hall, 1999). Given the evidence indicating that
avian haemosporidian haplotypes differing by one cyt-b nucleo-
tide may be reproductively isolated entities (Bensch, Pérez-Tris,
Waldenstrom, & Hellgren, 2004), we followed the conventional
practice of referring to each unique cyt-b haplotype as a unique
parasite lineage. New lineages were named after the host of or-
igin following a standard protocol (Bensch et al., 2009), and DNA
sequences of all new lineages were deposited within GenBank
(MG714922-MG714926, MG726098-MG726173, MK947467-
MK947908, MK972879-MK972904) and the MaLAvi database
(http://mbio-serv2.mbioekol.lu.se/Malavi/).

—40.000
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FIGURE 1 Sampling sites distributed
across elevational and latitudinal
gradients in the New World. Colours
depict the site classification into one of
12 biogeographical regions denoted in
Table 1
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2.3 | Site-level altitude, climate and landscape
descriptors

A primary goal of this study was to identify important correlates of
avian individuals' probabilities of carrying Leucocytozoon parasites.
For each of the 69 sampling sites in our dataset, we extracted alti-
tude as well as several long-term climate variables that could relate
to Leucocytozoon infection prevalence by influencing the distribu-
tions and densities of vectors (see Appendix S1). Previous studies
have found evidence that temperature and precipitation variables,
particularly those that capture variation in summer and winter cli-
mates, may be linked to important aspects of haemosporidian com-
munity assembly and transmission (Clark et al., 2018; Fecchio, Wells,
et al., 2019; Oakgrove et al., 2014; Sehgal et al., 2011). We included
maximum temperature of the warmest month, maximum rainfall of
the wettest month, minimum temperature of the coldest month and
minimum rainfall of the driest month as predictors in our analysis.
Each of these variables was downloaded from Worldclim (http://
worldclim.org/version2), a database of interpolated climate layers
that describe long-term average conditions (from the years 1970 to
2000).

We extracted remote-sensed measurements for two variables
that reflect local variation in vegetation, moisture and the presence
of water bodies, all of which can impact the densities and distribu-
tions of simuliid black flies that act as vectors for Leucocytozoon par-
asites (Oakgrove et al., 2014; Santiago-Alarcon et al., 2012; Sehgal,
2015). These variables were Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Water Index (NDWI),
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both obtained at 10 km x 10 km resolution using functions in the
MODISTools r package (Tuck et al., 2014). This package accesses
remote-sensing images from NASA's MODerate-resolution Imaging
Spectroradiometer (MODIS) satellite (Justice et al., 1998). To ensure
that these variables accurately reflected conditions when vectors
were likely to be active, we calculated mean NDVI and NDW!I values
for each site across the primary growing season. For the Northern
Hemisphere, this included values from May to August (inclusive),
and for the Southern Hemisphere, we used values from December

to March (inclusive).

2.4 | Ecological and phylogenetic relationships of
avian hosts

Avian host species-level covariates that may influence susceptibility
to vectorborne blood parasites were extracted from the ELTONTRAITS
v1.0 database (Wilman et al., 2014). The selected traits included the
relative proportions of time species spend foraging in lower and
upper level canopies as well as species' average body masses. In ad-
dition to these ecological traits, we extracted data on species' evo-
lutionary relationships from an open-source phylogenetic supertree
that includes all extant avian species (Jetz, Thomas, Joy, Hartmann,
& Mooers, 2012). To capture uncertainty in avian host phylogenetic
relationships, we downloaded 100 possible tree topologies from the
supertree's ‘Ericsson All Species’ Bayesian posterior distribution

(available at Birdtree.org/subsets/).

2.5 | Phylogenetic logistic regressions to predict
infection probability

We filtered the dataset to only include species for which at least ten
individual birds had been sampled for parasites. This allowed us to
focus on potential host species for which we had high confidence of
detecting parasites, even when the true background infection preva-
lence was low (e.g. restricting the analysis to species with at least 10
individuals results in a ~70% probability of detecting infections when
the true prevalence is just 10%). This filtering resulted in a dataset
with 3,938 individual birds sampled from 155 different species.

To quantify factors associated with variation in Leucocytozoon
infection probability among birds sampled in the Americas, we used
a phylogenetic generalized linear model fitted in a Bayesian frame-
work. We assumed the observed presence-absence of parasite in-
fection Inf(i) from host individual i at sampling site s was a random
Bernoulli draw contingent on surrounding environmental conditions,

host phylogenetic ancestry and species-level ecological variables:
Inf (i) ~ Bernoulli [P (i)) (1)

Using a logit link function, we modelled the infection probability
¥(i) of each host individual using a hierarchical linear regression of

the form:

logit (¥ (i) = a (i) + P (i) + PET (i, ) (2)

Here, a represents a non-phylogenetic species-level random in-
tercept, which we implemented to capture aspects of avian species
susceptibility that were not described by the selected ecological
variables or by avian phylogenetic relationships. ® represents a phy-
logenetic random term capturing evolutionary relationships among
avian host species. This term was drawn from a zero-centred multi-
variate normal distribution that was parameterized with an inverse

phylogenetic variance-covariance (VCV) matrix Q:
@ ()~MVN [0,9] (3)

This multivariate random effect models the assumption that
closely related avian species may harbour similar infection rates. To
assess the effect of phylogenetic uncertainty on our estimates, we
followed de Villemereuil, Wells, Edwards, and Blomberg (2012) by
placing a categorical prior distribution on the set of phylogenetic
VCV matrices, allowing the sampler to randomly select one of these
matrices (with equal probabilities) in each iteration. This allowed
for more precise estimation of regression coefficients than using a
single consensus tree and was considered more appropriate than
running sequential models across different trees. Finally, the $ coef-
ficients in Equation (2) describe effects of 12 additional species-level
and site-level covariates on each bird's infection probability. Chosen
species-level variables included sex (binary), body mass (continu-
ous), lower canopy affinity (continuous) and upper canopy affinity
(continuous). We used these host traits because they are known to
influence haemosporidian diversity and prevalence and are available
in open-source data repositories. The predicted effects of these
traits specifically on Leucocytozoon infection have been debated
previously (Barrow et al., 2019; Lutz et al., 2015). As sex information
was missing for 1,424 birds, we imputed these missing values using
Bernoulli draws with a prior belief of p = .5. Site-level predictor vari-
ables were as follows: altitude, latitude (absolute value), maximum
temperature of the warmest month, maximum rainfall of the wettest
month, minimum temperature of the coldest month, minimum rain-
fall of the driest month, mean NDVI and mean NDWI (all site-level
variables were continuous and scaled to unit variance prior to analy-
sis to facilitate direct comparisons of coefficients).

We fitted the model and estimated coefficients using Markov
chain Monte Carlo (MCMC) sampling with the Gibbs sampler pro-
vided in the open-source software Jacs (Plummer, 2003). Priors for
species-level non-phylogenetic intercepts (a) were sampled from
normal distributions with mean = 0 and SD = 10 (see Appendices S1
and S2 for model specifications in Jacs language). To reduce the mod-
el's parameter space and identify the most important predictors, we
implemented a form of Gibbs variable selection (GVS) when estimat-
ing p coefficients that ensured effects were shrunk towards zero
when evidence for their inclusion in the model was limited (Fecchio,
Wells, et al., 2019; O'Hara & Sillanpa3, 2009). Our GVS method im-
plemented a spike and slab prior of the form P(g]ind) = N(O, SD = 10)
(1 - ind) + N(O, SD = 0.01)(ind), where variable selection indicator
(ind) was a Bernoulli draw with a low prior belief of inclusion (p ~ .2).
We used vague normal priors for estimates when variables were
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selected for inclusion (e.g. we sampled from the ‘slab’ when ind = 1).
The pseudo-priors (sampled from the ‘spike’ when ind = 0) forced
estimates towards zero when they received little empirical support,
while still allowing the sampler to efficiently move between the
distributions (Wells, Lakim, & O'Hara, 2014). This method had the
added benefit that posterior distributions of GVS indicators were
reflective of each variable's relative importance. To allow for varia-
tion in latitudinal infection gradients between the two hemispheres,
as has been detected previously for a number of ecological phe-
nomena (Chown, Sinclair, Leinaas, & Gaston, 2004; Zhang, Zhang, &
Ma, 2016), we allowed the latitude g coefficient to vary among the
Northern and Southern Hemispheres.

We ran two MCMC chains for a burn-in period of 100,000 it-
erations and gathered 1,000 parameter estimates. Mixing of chains
was assessed both visually and with the Gelman-Rubin diagnostic
(all values were <1.2). A posterior predictive check was used to as-
sess whether our model's assumptions yielded good approximations
of the data generating process. Here, Bayesian p-values ~ .5 indicate
a lack of discrepancy between predictions and observed values (in-
dicating good fit), while values near O or 1 indicate poor fit (Gelman,
Meng, & Stern, 1996).

2.6 | Phylogenetic signal and comparison with
a non-phylogenetic model

We estimated phylogenetic signal in species' infection probabilities
by calculating Pagel's lambda (4; Pagel, 1999). Following Hadfield
and Nakagawa (Hadfield & Nakagawa, 2010), we estimated 4 as the
proportion of variance that was attributed to variance in phyloge-
netic intercepts (®). To describe how aspects of species identity that
were not captured by our chosen traits or by phylogenetic relation-
ships may contribute to infection probability, we also estimated the
proportion of variance that was attributed to non-phylogenetic spe-
cies intercepts (a).

Initial models showed that estimates of 1 were very low and
that non-phylogenetic intercepts accounted for the majority of
variance in species' average infection rats (see Results below). In
addition, convergence for the phylogenetic model was difficult to
reach (Appendix S2). As a result, we fit an equivalent model that
did not include the phylogenetic error term. Run parameters and
convergence assessments were the same for this model (Appendix
S2).

2.7 | Latitudinal variation in parasite
phylogenetic diversity

We tested whether phylogenetic diversity of Leucocytozoon
parasite communities showed patterns consistent with the
LDG hypothesis. All Leucocytozoon cytochrome b sequences
that overlapped with a 477 bp in length fragment were aligned
using Bioedit (Hall, 1999). This alignment of 216 unique para-
site sequences was used to reconstruct their phylogenetic rela-
tionships. Parasite phylogenies were estimated using Bayesian

inference in the program Beast v. 1.8.4 (Drummond, Suchard,
Xie, & Rambaut, 2012). Run parameters were as follows: the
GTR + | + G model of evolution, a Yule process tree prior and
a log-normal relaxed clock using the substitution rate of 0.006
per lineage per million years (Ricklefs & Outlaw, 2010). We ran
100 million generations of MCMC (Markov chain Monte Carlo)
sampled every 5,000 generations, discarding 10% of genera-
tions as burn-in to generate a posterior distribution of 18,001
total trees.

Parasite phylogenetic diversity of each sampling region was
calculated by generating a region by parasite count matrix and
generating an abundance-weighted and sample-size-corrected
estimate of diversity using functions available in the iNextPD r
package (Hsieh & Chao, 2017). This method uses an integration of
rarefaction and extrapolation techniques to account for variation
in sample size and sample completeness among sampling sites,
both of which are known to have large influences on resulting
estimates of diversity. As above, we accounted for phylogenetic
uncertainty in our diversity estimates by repeating calculations
across a distribution of 100 parasite trees that were randomly
drawn (without replacement) from the phylogenetic posterior
distribution.

We used a hierarchical linear regression to test the LDG hypothe-
sis. Our outcome of interest was standardized phylogenetic diversity
for each region. However, because several regions harboured low
parasite recoveries, interpolation estimates of diversity were not pos-
sible. We excluded these regions (N = 3; Amazonia, Atacama Desert
and Cerrado), which resulted in a vector of 900 total diversity esti-
mates for analysis (nine regional estimates across 100 different par-
asite trees). Rather than simply using mean values for predictors, we
accounted for observed variation in latitudes, altitudes and landscape
descriptors across sampling sites in each region by including these
predictors as latent variables in our model. This was done by calcu-
lating the means and standard deviations for each quantity and using
these values to parameterize normal distributions from which each
of the 100 observations per region was drawn (see Appendix S3 for
model specifications in sacs language). For example, if a region's mean
altitude was 50 m and the SD was 10 m, we drew our 100 altitude
observations from the distribution N(50, 10). Predictors included in
the model were latitude (absolute value), altitude, NDVI and NDWI.
We did not include climate variables because Clark (2018) found no
influence of climate variation on parasite phylogenetic diversity. We
included a random intercept term for region to capture region-level
variation that was not described by our chosen predictors.

Priors for regression coefficients in our linear model were speci-
fied as vague normal distributions (see Appendix S3 for model spec-
ifications in Jacs language). We ran two MCMC chains for a burn-in
period of 75,000 iterations and gathered 1,000 parameter estimates.
Convergence and posterior predictive checks were assessed as above.
For all parameters from both models, we report posterior modes and
95% highest posterior density credible intervals. All analyses were
conducted in r and primarily made use of the following packages:
ppPLYR (Wickham & Francois, 2017), riacs (Plummer, 2003) and READXL
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(Wickham & Bryan, 2017). r code to replicate predictor variable ex-

traction and regression analyses are supplied in Appendices $1-S3.

3 | RESULTS

3.1 | Predictors of infection risk

3.1.1 | Species-level

In total, 747 out of 6,293 individual birds were infected with
Leucocytozoon (overall prevalence of 12%, 129 host species, see raw
data in Appendix S4). There was wide variation in our estimates of av-
erage prevalence (ranging from zero to 100%) for the 155 well-sampled
bird species (minimum 10 individuals screened per species; Appendix
S5). We found little evidence that host phylogenetic relationships
played a role in modulating Leucocytozoon infection risk (95% Cl for 4
estimates: 0.01, 0.05; Appendix S2). Instead, the non-phylogenetic in-
tercepts captured the majority of species-level variance (95% Cl of spe-
cies vs. phylo terms: 0.66, 0.94). As a result, and because convergence
for the phylogenetic model was difficult to reach (Appendix S2), we re-
port results from an equivalent model that did not include the phyloge-
netic error term. From this model, we found that infection probability
did not correlate with any of the species-level ecological variables (sex,
body mass, canopy affinity; GVS indicators for each of these variables
were below 0.1, suggesting they were readily excluded; Appendix S2),
which suggests that most of the variation in prevalence across species

could be determined by the species-level random intercept terms.

3.1.2 | Sitelevel

The prevalence of Leucocytozoon was heterogeneous across the 69
bird communities and among the 12 biogeographical regions (rang-
ing from zero to 84%; Table 1). Among the eight landscape variables

that could explain such heterogeneity, only maximum temperature
of the warmest month, NDVI, NDWI and Latitude was found to be
important site-level predictors (GVS indicator variables for these
three covariates were all above 0.6; Figure 2). Infection was more
likely to occur in areas with cooler summers (95% CI for maximum
temperature of the warmest month: -1.52, -0.26), with higher grow-
ing season vegetation cover (95% CI for NDVI: 0.23, 0.95), with
higher growing season moisture content (95% CI for NDWI: 0.09,
0.89) and at higher absolute latitudes (95% CI for Latitude: 0.98,
3.11). There was no evidence that latitudinal patterns differed across
hemispheres (95% Cls for these estimates strongly overlapped; see
Appendix S2). By using the standard deviations of maximum temper-
ature of the warmest month and Latitude, we calculated effect sizes
(NDVI and NDWI are standardized, unitless indices and so calculat-
ing an effect sizes does not help with interpretation). We estimated
that a five-degree increase in maximum temperature of the warmest
month resulted in a 4-fold decrease in a bird's infection probability,
whereas an increase in absolute Latitude of 10 degrees resulted in a

10-fold increase in infection probability.

3.2 | Predictors of parasite diversity

Among the nine regions with at least six infections recorded, NDVI
and Latitude were the strongest predictors of parasite community
phylogenetic diversity, collectively capturing ~99% of the explained
variation (Figure 3). There was a trend of increasing diversity at higher
absolute latitudes, though two regions (Mesoamerica and Prairie
Parkland) did not follow this trend (Appendix S6). Communities were
also found to be less diverse with increasing growing season veg-
etation cover (NDVI), though this relationship was comparatively
weak and the regions of Southwest and Temperate Forest appeared
to be outliers (Appendix S7). We used prediction heatmaps to fur-

ther visualize these estimated trends (Figure 4). Here, it was clear

TABLE 1 Sample sizes (sites, individual birds, host species and parasite lineages found), number of infections and prevalence for the 12
biogeographical regions

Mean Mean # Bird # Bird Prevalence
Biogeographical region #sites latitude longitude species individuals # Infections # Lineages (%)
9 64 -147.87 37 397 335 72 84.4
Prairie Parkland 2 48.26 -96.22 27 228 51 9 224
_ 6 40.23 -75.32 81 1,287 225 96 17.5
Southwest 14 24.05 -102.31 57 136 10 5 7.4
14.17 -85.7 160 470 16 14 3.4
-4.21 -54.46 244 1,239 5 1 0.4
-6.45 -77.75 270 1,173 13 12 1.1
-15.3 -53.44 34 147 0 0.0
-16.25 -56.37 57 122 10 8.2
-19.7 -69.07 18 68 2 29
-22.2 -45.13 87 341 16 7 4.7
-38.92 -67 80 685 64 28 9.3

Note: Colour coding corresponds to sampling localities in Figure 1.
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FIGURE 2 Regression coefficient
estimates for site-level predictors of a
bird's probability of being infected with
Leucocytozoon parasites in the New
World. Boxplots represent posterior
modes (lines), 95% highest posterior
density credible intervals (hinges) and
minimums and maximums (whiskers).
Numbers above boxes represent the mean
Gibbs variable selection indicator for each

variable, which indicates the proportion
of iterations in which the variable was
included in the model (higher values
indicate stronger support that a particular

Regression coefficient estimate

variable improves the model likelihood)
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that Latitude was found to be a stronger predictor of community

diversity.

4 | DISCUSSION

Our models revealed that host ecological traits and phylogenetic rela-
tionships played no role in modulating the probability of a bird being
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FIGURE 3 Regression coefficient estimates for site-level
predictors of Leucocytozoon parasite community phylogenetic
diversity in the New World. Boxplots represent posterior modes
(lines), 95% highest posterior density credible intervals (hinges)
and minimums and maximums (whiskers). Numbers above boxes
represent the proportions of variance in estimated community
diversity that were explained by each variable

infected with Leucocytozoon in the New World. Rather, the heteroge-
neity in infection rates was driven by predictors at the site level, with
higher probabilities of infection in areas at higher absolute Latitudes,
cooler summers, with higher cover of vegetation (NDVI) and with higher
moisture levels (NDWI). Latitude and NDVI were also the strongest
predictors of Leucocytozoon phylogenetic diversity across the New
World, with a trend of increasing parasite diversity at higher absolute
Latitudes and with decreasing average vegetation cover. These results
are in opposition with the assumption that infection rates and parasite
diversity are higher in tropical habitats or towards the equator.

The highest probability of a bird being infected with
Leucocytozoon was consistently found in regions with cooler
summers and towards the pole, demonstrating that high tem-
perature appears to be an important environmental barrier for
Leucocytozoon distribution. Previous studies have shown that cli-
mate has little or no influence on the diversity and distributions
of two related genera (Plasmodium and Haemoproteus) in both
Nearctic (Ellis et al., 2015) and Neotropical birds (Fecchio, Bell, et
al., 2019), whereas temperature explained haemosporidian prev-
alence (including Leucocytozoon) in Arctic birds (Oakgrove et al.,
2014). Although Plasmodium prevalence and distribution are con-
strained by low temperature due to thermal limits on parasite de-
velopment within mosquito vectors (LaPointe, Goff, & Atkinson,
2010), Leucocytozoon might be constrained by high temperature
(Fecchio et al., 2018). Experimental infections under laboratory
conditions will be necessary to confirm whether high temperature
is a limiting factor for Leucocytozoon parasite development within
their vectors, which ultimately affects prevalence and distribu-
tions among their avian hosts, thus constraining lineage diversity
across biogeographical regions. Nevertheless, higher prevalence
of Leucocytozoon in boreal (Galen et al., 2018; Oakgrove et al.,
2014; this study) and temperate regions (Merino et al., 2008,
this study) supports the idea that Leucocytozoon parasites (and
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FIGURE 4 Bivariate prediction heatmaps representing posterior predictions of standardized parasite community phylogenetic diversity
across regions ordered by absolute latitude (left-hand plot) and Normalized Difference Vegetation Index (NDVI) (right-hand plot). Cooler blue
colours indicate fewer predictions occurred within a particular multivariate space, while warmer reds indicate higher densities of posterior
predictions. Collectively, Latitude and NDVI accounted for >99% of explained variance in community phylogenetic diversity

perhaps their vectors) may be better adapted for development
and transmission in colder environments (Valkitnas, 2005).

Contrary to previous studies demonstrating an increase of prev-
alence with increasing elevation across the tropical Andes (Barrow
et al., 2019; Galen & Witt, 2014; Gonzalez et al., 2014; Harrigan et
al., 2014; Lotta et al., 2016), we have shown no effect of altitude
on infection probability and phylogenetic diversity of Leucocytozoon
across bird communities at a continental scale. This pattern may be
driven by the scarcity of Leucocytozoon infections in the highland
Atlantic Forest and the moderate prevalence of Leucocytozoon in
some low-elevation sites such as the Pantanal and temperate for-
est. Therefore, differences in altitude seem to not capture variation
in the required combinations of environmental determinants of
Leucocytozoon prevalence when latitude is taken into consideration
at a larger scale. Moreover, there is no strong evidence that the den-
sity nor diversity of black flies (the main vectors for Leucocytozoon
parasites) follows an altitudinal gradient (Currie & Adler, 2008;
McCreadie, Adler, & Hamada, 2005).

Host ecological attributes and phylogenetic relatedness would
be expected to promote host range expansion in parasitic organisms
(Clark & Clegg, 2017; Poulin et al., 2011) and thus determine the par-
asite prevalence and diversity across host communities. However, for
multi-host parasites, such as Leucocytozoon, the parasite host range
might be decoupled from vertebrate host phylogenetic signal (Galen,
Speer, & Perkins, 2019), as parasite sharing does not occur necessarily
between avian taxa that share acommon ancestor, but instead through
cross-species transmission between unrelated host taxa mediated via
vectors. Blackflies have been shown to harbour high diversities of
Leucocytozoon parasites within a single species (Murdock, Adler, Frank,
& Perkins, 2015), supporting the idea that vectors may play import-
ant roles in facilitating transmission of Leucocytozoon infections across
distantly related bird species. Furthermore, many parasites and patho-
gens can infect unrelated host species with similar ecological niches,
such as habitat use, nesting behaviour and diet (Clark et al., 2018;
Poulin, 2007). Whereas these host traits are often phylogenetically

conserved, they may also be influenced by environmental conditions.

Therefore, rather than host ecology and evolution, regional climate
determined primarily by temperature seems to have an important im-
pact on Leucocytozoon host range expansion as demonstrated recently
for its two related genera (Fecchio, Wells, et al., 2019).

Our hierarchical linear regression clearly demonstrates a posi-
tive relationship between parasite diversity and Latitude across New
World bird communities, which is in opposition with the LDG hy-
pothesis and contrasts with previous studies showing that species
richness increases towards the equator in some parasitic and patho-
genic organisms (Fecchio, Bell, et al., 2019; Guernier, Hochberg, &
Guégan, 2004; Nunn, Altizer, Sechrest, & Cunningham, 2005; Rohde
& Heap, 1998). Whether or not pathogens consistently obey this
macroecological phenomenon, as observed for a multitude of free-
living organisms, has received conflicting support and a growing
body of evidence supports a lack of an effect of latitude on species
richness, abundance, diversity or prevalence for parasitic organisms
(Clark, 2018; Kamiya et al., 2014; Poulin, 1995; Rohde & Heap, 1998).
Because the distribution of parasites is largely dependent on the
distribution of their hosts, one might expect that parasitic organ-
isms would adhere to the LDG patterns by following the diversity of
their hosts. The inverse patterns in diversity between Leucocytozoon
(higher towards Poles) and avian hosts (higher towards Equator;
Duchéne & Cardillo, 2015) in the New World suggest that parasite
phylogenetic diversity is driven by the diversity of its black fly vec-
tors (higher richness in temperate streams than in tropical streams;
McCreadie et al., 2005).

Infection prevalence and diversity of Leucocytozoon were not
solely predicted by Latitude and its effects on bioclimatic conditions.
Local landscape features, such as NDVI and NDWI, are known to
capture microhabitat characteristics that are important for vector
reproduction and therefore should explain prevalence, and possibly
diversity, of blood parasites (Pullan et al., 2011; Sehgal et al., 2011;
Soares Magalhdes et al., 2011). Whereas NDVI was consistently
found to be an important predictor of Leucocytozoon community as-
sembly and infection rates across the New World (this study) and
Alaska (Oakgrove et al., 2014), NDWI only influenced prevalence.
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This reinforces that NDWI may not accurately reflect breeding site
availability for vector-transmitted parasites and pathogens. Black
flies (the vectors for Leucocytozoon) are dependent on the flowing
streams created by sustained snow melt in temperate and boreal
regions. In these regions, sufficient snow melt would produce the
flowing small streams that these vectors need for reproduction in
areas with limited elevation gradient. This lack of cold water and as-
sociated high dissolved oxygen needed for larval development and
vector reproduction in lowland tropical sites may explain the low
prevalence and lineage diversity in low latitudes.

Quality data on vector biology are missing for most avian
haemosporidian parasites, but this is especially true for
Leucocytozoon. The simuliid vectors of Leucocytozoon (Valkitnas,
2005) show unique life-history characteristics as compared to
the vectors of Plasmodium or Parahaemoproteus, which should
affect their ecological distribution and evolutionary history in
ways that differ from Plasmodium or Parahaemoproteus. Unlike
the vectors of Plasmodium (mosquitoes) and Parahaemoproteus
(biting midges), the vectors of Leucocytozoon (black flies) are
diurnal feeders; therefore, Leucocytozoon transmission occurs
during the day when most birds are active. Since most birds rest
at night, mosquitoes and midges have good opportunities to take
blood without encountering a host defensive reaction. In con-
trast, black flies must contend with feeding on fully awake birds.
However, the window of opportunity for diurnal blood feeding
during the summer months is much wider in temperate zones (i.e.
long days and short nights) than in tropical zones where the sea-
sonal variation in photoperiod is more uniform. Because of the
extended feeding time, the per capita blood-feeding success of
black flies in temperate biomes would be proportionally higher
than in tropical biomes. More blood meals would yield greater
likelihood of transmission and, in turn, yield higher infection risk

in the local bird populations in the temperate and boreal regions.
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